
Bitcoin Developer Reference

Working Paper
Last changes: 15th December 2014

Krzysztof Okupski

Technische Universiteit Eindhoven, The Netherlands
k.s.okupski@student.tue.nl

Contents

1 Introduction 1

2 Preliminaries 1
2.1 Proof of Work . 1
2.2 Merkle Trees . 3

3 Architecture 5
3.1 Blocks . 5
3.2 Transactions . 8

3.2.1 Regular Transactions . 8
3.2.2 Coinbase Transactions . 12

3.3 Transaction Standardness . 14

4 Bitcoin ownership 16
4.1 General . 16
4.2 Script . 17
4.3 Standard Transaction Types . 18

4.3.1 Pay-to-Pubkey (P2PK) . 18
4.3.2 Pay-to-PubkeyHash (P2PKH) . 19
4.3.3 Pay-to-ScriptHash (P2SH) . 21
4.3.4 Multisig . 23
4.3.5 Nulldata . 25

4.4 Bitcoin Addresses . 26
4.4.1 Pay-to-PubkeyHash Address . 26
4.4.2 Pay-to-ScriptHash Address . 26

4.5 Signatures . 29

5 Blockchain 35
5.1 Structure . 35
5.2 Mining . 36

Acknowledgements 38

Appendix A Data types . 39

Appendix B Formulas . 40

Introduction 1

1 Introduction

Bitcoin is a decentralized digital cryptocurrency created by pseudonymous developer
Satoshi Nakamoto. The first paper on Bitcoin [1], also referred to as the original Bit-
coin paper, was published by Nakamoto in 2008. It provides a brief description of the
concepts and architecture schematics of the Bitcoin protocol. It was used as theoretical
groundwork for the first implementation of a fully functional Bitcoin client. However,
up until now, no structured and accessible protocol specification has been written. Al-
though the Bitcoin community has successfully created a protocol specification [2], it
requires solid prior understanding of its concepts and implementation. In this paper a
formal and accessible specification of the core Bitcoin protocol, i.e. excluding the P2P
overlay network, will be presented.

2 Preliminaries

This section gives a short introduction to cryptographic constructs necessary for a thor-
ough understanding of the protocol. In particular, the proof of work scheme and Merkle
trees will be discussed. Note that digital signatures are required as well but are inten-
tionally skipped for they are sufficiently covered by online literature.

2.1 Proof of Work

A proof of work is a cryptographic puzzle used to ensure that a party has performed a
certain amount of work. In particular, the Bitcoin mining process (see Sect. 5.2) incor-
porates a proof of work system based on Adam Back’s Hashcash [3]. It has two basic
properties - firstly, it ensures that the party providing the proof of work has invested a
predefined amount of effort in order to create the proof and secondly, that the proof is
efficiently verifiable. Typically, finding a solution to a proof of work puzzle is a probab-
ilistic process with a success probability depending on the predefined difficulty.

Let Alice and Bob be two parties communicating with each other and let Alice require
Bob to perform a certain amount of computational work for each message he sends to
Alice. To do so, Alice can require Bob to provide a string whose one-way hash satisfies
a predefined structure. Finding such a string has a certain success probability that will
determine how much work Bob has to invest on average in order to find a valid solution.

For example, in Bitcoin the hashing algorithm is double-SHA256 (SHA256 2) and the
predefined structure is a hash less or equal to a target value T. The success probability
of finding a nonce n for a given message msg, such that H = SHA256 2 (msg ||n) is less
or equal to the target T is

Pr[H ≤ T] =
T

2256
(1)

This will require a party attempting to find a proof of work to perform, on average, the
following amount of computations

1

Pr[H ≤ T]
=

2256

T
(2)

2 Bitcoin Developer Reference

Finally, it is easy to see that it can be efficiently verified whether the nonce accompanied
with the message is indeed a valid proof of work by simply evaluating

SHA2562(msg||n) ≤ T (3)

Preliminaries 3

2.2 Merkle Trees

Merkle trees, named after their creator Ralph Merkle, are binary hash trees used for
efficient verification of data integrity. An example of a Merkle tree can be seen in Fig.
2.1. Leaves are computed directly as hashes over data blocks, whereas nodes further up
the tree are computed by concatenating and hashing their respective children.

Figure 2.1. Merkle Tree

The main advantage of Merkle trees is that when one data block changes it is not
necessary to compute a hash over all the data, as opposed to naive hashing. Assume
data block d00 is modified, then n00 has to be re-computed as well as all nodes along
the branch until the root node. Therefore, the number of required hash computations
scales logarithmically in the number of data blocks. Since both data blocks and hashes
are relatively small in size, this process is fairly efficient.

Other cases

The previously discussed example considered the situation where the number of data
blocks is a power of two. In such a case the computation results in a full and complete
binary tree. However, since it is required that each node, except for the leaves, has ex-
actly two children, measures have to be taken if nodes are missing. In the following the
method used in Bitcoin will be discussed.

The solution is straightforward - when forming a row in the tree (excluding the root),
whenever there is an odd number of nodes, the last node is duplicated. In effect, each
intermediary row in the tree will always have an even number of nodes and therefore
each node, except for the leaves, will have exactly two children.

4 Bitcoin Developer Reference

Figure 2.2. Merkle Tree with Missing Nodes

In the example given in Fig. 2.2 there are only three data blocks and therefore the
computation of the fourth node in the second last row is missing a child. Thus, the last
node is replicated and the computation is continued as in the previous example (see Fig.
2.1). Should an odd number of nodes occur at any other point during the computation,
then the same rule is applied.

Architecture 5

3 Architecture

Central to Bitcoin’s architecture is a public ledger called the blockchain, which stores all
processed transactions in chronological order. Transactions are processed by a loosely-
organized network of miners in a process called mining (see Sect. 5.2). In it the miner
creates a block with a set of unprocessed transactions and attempts to solve a proof of
work puzzle (see Sect. 2.1). Once a valid solution has been found, the block including the
solution is published throughout the network and accepted into the blockchain. In this
section the structure of blocks and transactions will be discussed in detail. Note that the
following description is based on the Bitcoin source code [4] and the Bitcoin Protocol
Specification on Wikipedia [2]. Furthermore, all data types denoted in the diagrams are
explained in detail in Appendix A.

3.1 Blocks

Each block is composed of a header and a payload. The header stores the current block
header version (nVersion), a reference to the previous block (HashPrevBlock), the root
node of the Merkle tree (HashMerkleRoot), a timestamp (nTime), a target value (nBits)
and a nonce (nNonce). Finally, the payload stores the number of transactions (#vtx)
and the vector of transactions (vtx) included in the block.

Field name
Type
(Size)

Description

nVersion
int

(4 bytes)
Block format version (currently 2).

HashPrevBlock
uint256

(32 bytes)
Hash of previous block header
SHA2562(nV ersion|| . . . ||nNonce).

HashMerkleRoot
uint256

(32 bytes)
Top hash of the Merkle tree built from all trans-
actions.

nTime
unsigned int

(4 bytes)
Timestamp in UNIX-format of approximate block
creation time.

nBits
unsigned int

(4 bytes)

Target T for the proof of work problem in compact
format. Full target value is derived as:
T = 0xh2h3h4h5h6h7 ∗ 28∗(0xh0h1−3)

nNonce
unsigned int

(4 bytes)
Nonce allowing variations for solving the proof of
work problem.

#vtx
VarInt

(1-9 bytes)
Number of transaction entries in vtx.

vtx[]
Transaction
(Variable)

Vector of transactions.

Table 3.1. Block Structure

6 Bitcoin Developer Reference

nVersion
The version field stores the version number of the block format. Ever since BIP0034 [5]
is in place, the block format version is 2 and blocks of any other version are neither
relayed nor mined.

HashPrevBlock
This field stores the reference to the previous block, computed as a hash over the block
header as depicted in Fig. 3.1.

Figure 3.1. Block Reference Computation

A double-SHA256 hash is calculated over the concatenation of all elements in the pre-
vious block header:

SHA2562(nV ersion||HashPrevBlock||HashMerkleRoot||nTime||nBits||nNonce)
(4)

The reference functions as a chaining link in the blockchain. By including a reference
to the previous block, a chronological order on blocks, and thus transactions as well, is
imposed.

HashMerkleRoot
This field stores the root of the Merkle hash tree. It is used to provide integrity of all
transactions included in the block and is computed according to the scheme described
in Sect. 2.2. The parameters used for computing the tree are double-SHA256 as the
hashing algorithm and raw transactions as the data blocks (see Table 3.2 and 3.4).

nTime
The time field stores the timestamp in UNIX format denoting the approximate block
creation time. As the timestamp is a parameter included in block mining, it is fixed at
the beginning of the process.

nBits
The nBits field stores a compact representation of a target value T, which is utilized
in the proof of work puzzle (see Sect. 5.2). The target value is a 256 bit long number,
whereas its corresponding compact representation is only 32 bits long and thus encoded

Architecture 7

with only 8 hex digits. The target value can be derived from its compact hexadecimal
representation 0xh0h1h2h3h4h5h6h7 with the formula

0xh2h3h4h5h6h7 ∗ 28∗(0xh0h1−3) (5)

The upper bound for the target is defined as 0x1D00FFFF whereas there is no lower
bound. The very first block, the genesis block, has been mined using the maximum
target. In order to ensure that blocks are mined at a constant rate of one block per 10
minutes throughout the network, the target T is recalculated every 2016 blocks. This
is done based on the time tsum it took to mine, due to an off-by-one error [6], the last
2015 blocks:

T ′ =
tsum

14 ∗ 24 ∗ 60 ∗ 60s
∗ T (6)

Note that tsum is calculated as the difference of the timestamps nTime in the block
header.

nNonce
The nonce field contains arbitrary data and is used as a source of randomness for solving
the proof of work problem. However, since it is fairly small in size with 4 bytes, it does
not necessarily provide sufficient variation for finding a solution. Therefore, other sources
exist and will be addressed in more detail in Sect. 5.2.

8 Bitcoin Developer Reference

3.2 Transactions

In principle, there are two types of transactions, coinbase transactions and regular trans-
actions. Coinbase transactions are special transactions in which new Bitcoins are intro-
duced into the system. They are included in every block as the very first transaction
and are meant as a reward for solving a proof of work puzzle. Regular transactions,
on the other hand, are used to transfer existing Bitcoins amongst different users. From
an architectural point of view, a coinbase transaction can be seen as a special case of
a regular transaction. For this reason, the structure of a regular transaction will be
discussed first, followed by the differences between coinbase and regular transactions.

3.2.1 Regular Transactions

As mentioned in the previous section, each block in the blockchain includes a set of
transactions. Every transaction consists of a transaction version (nVersion), a vector
of inputs (vin) and a vector of outputs (vout), both preceded by their count, and a
transaction inclusion date (nLockTime).

Field name
Type
(Size)

Description

nVersion
int

(4 bytes)
Transaction format version (currently 1).

#vin
VarInt

(1-9 bytes)
Number of transaction input entries in vin.

vin[]

hash
uint256

(32 bytes)
Double-SHA256 hash of a past transaction.

n
uint

(4 bytes)
Index of a transaction output within the transac-
tion specified by hash.

scriptSigLen
VarInt

(1-9 bytes)
Length of scriptSig field in bytes.

scriptSig
CScript

(Variable)
Script to satisfy spending condition of the trans-
action output (hash,n).

nSequence
uint

(4 bytes)
Transaction input sequence number.

#vout
VarInt

(1-9 bytes)
Number of transaction output entries in vout.

vout[]

nValue
int64 t

(8 bytes)
Amount of 10−8 BTC.

scriptPubkeyLen
VarInt

(1-9 bytes)
Length of scriptPubkey field in bytes.

scriptPubkey
CScript

(Variable)
Script specifying conditions under which the
transaction output can be claimed.

nLockTime
unsigned int

(4 bytes)
Timestamp past which transactions can be re-
placed before inclusion in block.

Table 3.2. Regular Transaction Structure

nVersion
The version field stores the version number of the transaction format. The current
transaction format version is 1.

Architecture 9

#vin
This field stores the number of elements in the inputs vector vin. It is encoded as a
variable length integer (see Appendix A).

vin
The vin field stores a vector of one or more transaction inputs. Each transaction input
is composed of a reference to a previous output (hash,n), the length of the signature
script field in bytes (scriptSigLen), the signature script field (scriptSig) itself and a
transaction sequence number (nSequence).

- (hash,n)
A previous output is uniquely identified by the tuple (hash,n). The hash field, also
referred to as the transaction ID (TxID), is computed as a double-SHA256 hash of
the raw transaction:

TxID = SHA2562(Transaction) (7)

Hence, whilst a transaction is uniquely identified by its hash, the specific output
within that transaction is identified by the output index n. An example is given
below in Fig. 3.2.

Figure 3.2. Transaction Output Reference Computation

10 Bitcoin Developer Reference

- scriptSigLen
This field stores the length of the signature script field scriptSig in bytes. It is
encoded as a variable length integer (see Appendix A).

- scriptSig
The signature script field contains a response script corresponding to the challenge
script (see scriptPubey field) of the referenced transaction output (hash,n). More
precisely, whilst the challenge script specifies conditions under which the transaction
output can be claimed, the response script is used to prove that the transaction is
allowed to claim it. More details on transaction verification can be found in Sect.
4.2.

- nSequence
This field stores the transaction input sequence number. It was once intended for
multiple signers to agree to update a transaction before including it in a block. If
a signer was done updating, he marked his transaction input as final by setting the
sequence number to the highest 4-byte integer value 0xFFFFFFFF. More details can
be found in Sect. 3.3 under the Final Transaction Rule.

#vout
This field stores the number of elements in the output vector vout. It is encoded as a
variable length integer (see Appendix A).

vout
The vout field stores a vector of one or more transaction outputs. Each transaction
output is composed of an amount of BTC to be spent (nValue), the length of the public
key script (scriptPubkeyLen) and the public key script (scriptPubkey) itself.

- nValue
The nValue field stores the amount of BTC to be spent by the output. The amount
is encoded in Satoshis, that is 10−8 BTC, allowing tiny fractions of a Bitcoin to be
spent. However, note that in the reference implementation transactions with outputs
less than a certain value are referred to as “dust” and are considered non-standard
[7]. This value is currently by default 546 Satoshi and can be defined by each node
manually. Dust transactions are neither relayed nor mined. More details on dust
transactions can be found in Appendix B.

- scriptPubkeyLen
This field stores the length of the public key script scriptPubkey in bytes. It is
encoded as a variable length integer (see Appendix A).

- scriptPubkey
The public key script field contains a challenge script for transaction verification.
More precisely, whilst the challenge script specifies conditions under which the trans-
action output can be claimed, the response script (see scriptSig field) is used to prove
that the transaction is allowed to claim it. More details on transaction verification
can be found in Sect. 4.2.

nLockTime
This field stores the lock time of a transaction, i.e. a point in time past which the

Architecture 11

transaction should be included in a block. Once the lock time has been exceeded, the
transaction is locked and can be included in a block. The lock time is encoded as either
a timestamp in UNIX format or as a block number:

Value Description

0 Always locked.

< 5 ∗ 108 Block number at which transaction is locked.

≥ 5 ∗ 108 UNIX timestamp at which transaction is locked.

Table 3.3. Lock Time Values

If all transaction inputs (see vin field) have a final sequence number (see nSequence
field), then the lock time is ignored. More details can be found in Sect. 3.3 under the
Final Transaction Rule.

12 Bitcoin Developer Reference

3.2.2 Coinbase Transactions

As can be seen in Table 3.4, except for renaming the signature script field from scriptSig
to coinbase, the data structure of the transaction remains the same. However, there are
several constraints specific to a coinbase transaction. In the following the differences
between a regular and a coinbase transaction will be explained.

Field name
Type
(Size)

Description

nVersion
int

(4 bytes)
Transaction format version (currently 1).

#vin
VarInt

(1-9 bytes)
Number of transaction inputs entries in vin.

vin[]

hash
uint256

(32 bytes)
Fixed double-SHA256 hash.

n
uint

(4 bytes)
Fixed transaction output index.

coinbaseLen
VarInt

(1-9 bytes)
Length of coinbase field in bytes.

coinbase
CScript

(Variable)
Encodes the block height and arbitrary data.

nSequence
uint

(4 bytes)
Transaction input sequence number.

#vout
VarInt

(1-9 bytes)
Number of transaction output entries in vout.

vout[]

nValue
int64 t

(8 bytes)
Amount of 10−8 BTC.

scriptPubkeyLen
VarInt

(1-9 bytes)
Length of scriptPubkey field in bytes.

scriptPubkey
CScript

(Variable)
Script specifying conditions under which the
transaction output can be claimed.

nLockTime
unsigned int

(4 bytes)
Timestamp until which transactions can be re-
placed before block inclusion.

Table 3.4. Coinbase Transaction Structure

#vin
The number of inputs stored in the input vector vin is always 1.

vin
The vin field stores a vector of precisely one transaction input. The input is composed
of a fixed transaction output reference (hash,n), the length of the coinbase field in bytes
(coinbaseLen), the coinbase field (coinbase) itself and a transaction sequence number
(nSequence).

- (hash,n)
In a coinbase transaction new coins are introduced into the system and therefore no
previous transaction output is referenced. The (hash,n) tuple stores the following
constant values:

hash = 0

n = 232 − 1
(8)

Architecture 13

- coinbaseLen
This field stores the length of the coinbase field coinbase in bytes. It is in the range
of 2-100 bytes and is encoded as a variable length integer (see Appendix A).

- coinbase
The coinbase field, also referred to as the coinbase script, stores the block height,
i.e. the block number within the blockchain, and arbitrary data.

Field name Size (bytes) Description

blockHeightLen 1 Length of blockHeight field in bytes.

blockHeight blockHeightLen Block height encoding.

arbitraryData
coinbaseLen−

(blockHeightLen+1)
Arbitrary data field.

Table 3.5. Coinbase Field Encoding

As of BIP0034 [5], the beginning of the coinbase field is reserved for the block height.
It is encoded in serialized Script format, i.e. the first byte specifies the size of the
block height in bytes, followed by the block height itself in little-endian notation.
The remaining bytes can be chosen arbitrarily and provide variability for the proof
of work puzzle (see Sect. 5.2).

vout
The transaction output vector is constrained by the maximal amount of Bitcoins that
is allowed to be transacted. More precisely, there are certain rules that dictate how the
nValue field is supposed to be calculated.

- nValue
In a coinbase transaction the miner is allowed to claim the current mining subsidy,
as well as transaction fees for all included transactions, as a reward for solving the
proof of work puzzle. The subsidy for finding a valid block is currently 25 BTC and
is halved every 210000 blocks. The transaction fee, on the other hand, is computed
for each transaction as the difference between the sum of input values and the sum
of output values.

14 Bitcoin Developer Reference

3.3 Transaction Standardness

Transaction standardness is defined as a set of requirements that is enforced upon a
transaction by any node utilizing the reference client for transaction processing. Trans-
actions that do not meet all the requirements are considered non-standard and will be
neither relayed nor mined. Note that these rules are not enforced upon transactions of an
already mined block. It is thus allowed to mine and include non-standard transactions
in blocks. The transaction standardness rules are as follows.

Transaction Size
A single transaction may not exceed 10000 bytes in size.

Transaction Version
The transaction format version is currently 1.

Final Transaction Rule
A transaction is called final if it satisfies at least one of the following conditions:

1) The transaction lock time (see nLockTime field) is set to locked or has been
exceeded.

2) All transaction inputs are final (see nSequence field).

This rule is associated with an obsolete mechanism called transaction replacement. It
allowed to replace certain parts of a transaction, e.g. transaction inputs, until either all
transaction inputs were finalized or the transaction lock time had passed. Note, however,
that the transaction replacement functionality has been completely removed from the
reference implementation to reduce the complexity of the protocol. Moreover, although
the transaction lock time functionality is still in place, it is considered non-standard.

Transaction Input Rules
For each transaction input the following requirements must be satisfied by each signature
script field:

1) Signature Script Size
The size may not exceed 500 bytes. Note that this limitation will change to 1650
bytes in the next major release of the reference client.

2) Push Only
Only a restricted set of data push operations is allowed. To be specific, only
opcodes1 in the range 0x00-0x60 are permitted.

3) Canonical Pushes
The scripting language allows to push data on the stack in different ways. This
rule enforces that only data pushes intended for a particular data size are allowed.

1 See https://en.bitcoin.it/wiki/Script for complete reference.

Architecture 15

Transaction Output Rules
For each transaction output the following requirements must be satisfied:

1) Standard Transaction Type
The public key script field (scriptPubkey) must encode a standard transaction
type (see Sect. 4.3).

2) Non-Dust Transaction
The transaction is not allowed to be “dust”. A transaction is called “dust” if
it contains an output that spends more than one third in transaction fees (see
Appendix B for calculation of the fee).

Nulldata Transaction Count
At most one transaction output of Nulldata transaction type (see Sect. 4.3) per trans-
action is permitted.

16 Bitcoin Developer Reference

4 Bitcoin ownership

4.1 General

Bitcoin utilizes two cryptographic primitives to realize a secure and decentralized trans-
action authorization system. Firstly, it employs asymmetric cryptography for (i) iden-
tification and (ii) authentication of recipients, as well as to (iii) ensure integrity of
regular transactions. More precisely, the public key of a public/private keypair is used
to identify a particular recipient, whereas the private key is used to create a signature
for both transaction authentication and integrity.

Secondly, the proof of work protocol is used to (i) regulate coin supply, (ii) reward
miners for transaction processing and (iii) ensure block integrity. In the mining process
all regular transactions of users and a special coinbase transaction created by the miner
are processed by solving the proof of work problem. It is important to note that while the
authenticity and integrity of regular transactions is ensured by the previously discussed
signature scheme, the integrity of coinbase transactions is assured by the proof of work
puzzle. In the following the exact application of these primitives will be described with
the help of Fig. 4.1.

Figure 4.1. Bitcoin Transaction Chain

To begin with, Bitcoins are introduced into the system with coinbase transactions (see
Sect. 3.2.2). In it the miner specifies one or more transaction outputs (vout), defining
the amounts and destinations to which the freshly created coins are to be transferred.
He identifies each destination by including a public key or a derived form of it in the
public key script field (scriptPubkey). As discussed above, the integrity of the coinbase
transaction is ensured by the computational hardness of the proof of work problem.

Next, when the miner intends to spend his reward, he creates a regular transaction, ref-
erences it to the specific output of the coinbase transaction and provides a signature in
the signature script field (scriptSig). Since the signature is computed over the complete

Bitcoin ownership 17

transactions (see Sect. 4.5), control of the private key corresponding to the referenced
public key is proven and integrity of the transaction is guaranteed. This chain is con-
tinued indefinitely and logged publicly in the blockchain to keep track of all Bitcoins
within the system at all times.

4.2 Script

Script is a stack-based, Turing-incomplete language designed specifically for the Bitcoin
protocol. A script is essentially a set of instructions2 that are processed left to right.
Script is used to encode two components - a challenge script and a response script:

- A challenge script (see scriptPubkey field) is part of a transaction output and specifies
under which conditions it can be claimed.

- A response script (see scriptSig field) is part of a transaction input and is used to
prove that the referenced transaction output can be rightfully claimed.

For a given transaction, each transaction input is verified by first evaluating scriptSig,
then copying the resulting stack and finally evaluating scriptPubkey of the referenced
transaction output. If during the evaluation no failure is triggered and the final top
stack element yields true, then the ownership has been successfully verified.

Although Script is very comprehensive and allows one to construct intricate conditions
under which coins can be claimed, much of its functionality is currently disabled in
the reference implementation and only a restricted set of standard script templates
is accepted. These are Pay-to-Pubkey (P2PK), Pay-to-PubkeyHash (P2PKH), Pay-to-
ScriptHash (P2SH), Multisig and Nulldata. In the next section, the structure of these
standard transaction types will be discussed.

2 See https://en.bitcoin.it/wiki/Script for complete reference.

18 Bitcoin Developer Reference

4.3 Standard Transaction Types

4.3.1 Pay-to-Pubkey (P2PK)

The structure of the challenge and response scripts of a Pay-to-Pubkey transaction are
depicted below in Fig. 4.2. Note that operations in a script are written as OP X, where OP
stands for operation and X is an abbreviation of the operation’s function. For example,
in Fig. 4.2 CHECKSIG stands for signature verification.

scriptPubkey: <pubkey> OP_CHECKSIG

scriptSig: <signature>

Figure 4.2. Pay-to-Pubkey Structure

In a Pay-to-Pubkey transaction the sender transfers Bitcoins directly to the owner
of a public key. He specifies in the challenge script the public key (pubkey) and one
requirement that the claimant has to prove:

1) Knowledge of the private key corresponding to the public key.

To do so, the claimant creates a response script containing only a signature. The scripts
are then evaluated as depicted in Table 4.1 and 4.2. The signature and the public key are
pushed onto the stack and evaluated. Note that the signature is computed as described
in Sect. 4.5.

Stack Remaining Script Description

Empty <signature>
The signature is pushed
on the stack.

<signature> Empty
Final state after evaluat-
ing scriptSig.

Table 4.1. Pay-to-Pubkey scriptSig Execution

Stack Remaining Script Description

<signature> <pubkey> OP_CHECKSIG

State after copying the
stack of the signature
script evaluation. The
public key is pushed on
the stack.

<pubkey>

<signature>
OP_CHECKSIG

The signature is verified
for the top two stack ele-
ments and the result is
pushed on the stack.

True Empty
Final state after evaluat-
ing scriptPubkey.

Table 4.2. Pay-to-Pubkey scriptPubkey Execution

Bitcoin ownership 19

4.3.2 Pay-to-PubkeyHash (P2PKH)

The structure of the challenge and response scripts of a Pay-to-PubkeyHash transaction
can be seen below in Fig. 4.3.

scriptPubkey: OP_DUP OP_HASH160 <pubkeyHash> OP_EQUALVERIFY OP_CHECKSIG

scriptSig: <signature> <pubkey>

Figure 4.3. Pay-to-PubkeyHash Structure

In a Pay-to-PubkeyHash transaction the sender transfers Bitcoins to the owner of a
P2PKH address (see Sect. 4.4.1). He specifies in the challenge script the public key hash
(pubkeyHash) of the Bitcoin address (depicted in Fig. 4.8) and two requirements that
the claimant has to prove:

1) Knowledge of the public key corresponding to pubkeyHash.

2) Knowledge of the private key corresponding to the public key.

To do so, the claimant creates a response script containing a signature and a public key.
The scripts are then evaluated as depicted in Table 4.3 and 4.4. First, it is verified if the
public key (pubkey) corresponds to the public key hash (pubkeyHash) and then whether
the signature is valid. The signature is computed as described in Sect. 4.5.

20 Bitcoin Developer Reference

Stack Remaining Script Description

Empty <signature> <pubkey>

The signature and the
public key are pushed on
the stack.

<pubkey>

<signature>
Empty

Final state after evaluat-
ing scriptSig.

Table 4.3. Pay-to-PubkeyHash scriptSig Execution

Stack Remaining Script Description

<pubkey>

<signature>

OP_DUP OP_HASH160 <pubkeyHash>

OP_EQUALVERIFY OP_CHECKSIG

State after copying the
stack of the signature
script evaluation. The
top stack element is du-
plicated.

<pubkey>

<pubkey>

<signature>

OP_HASH160 <pubkeyHash>

OP_EQUALVERIFY OP_CHECKSIG

The top stack element
is first hashed with
SHA256 and then with
RIPEMD160.

<pubkeyHashNew>

<pubkey>

<signature>

<pubkeyHash> OP_EQUALVERIFY

OP_CHECKSIG

The public key hash is
pushed on the stack.

<pubkeyHash>

<pubkeyHashNew>

<pubkey>

<signature>

OP_EQUALVERIFY OP_CHECKSIG

Equality of the top
two stack elements is
checked. If it evaluates
to true then execution is
continued. Otherwise it
fails.

<pubkey>

<signature>
OP_CHECKSIG

The signature is verified
for the top two stack ele-
ments.

True Empty
Final state after evaluat-
ing scriptPubkey.

Table 4.4. Pay-to-PubkeyHash scriptPubkey Execution

Bitcoin ownership 21

4.3.3 Pay-to-ScriptHash (P2SH)

The structure of the challenge and response scripts of a Pay-to-ScriptHash transaction
is depicted below in Fig. 4.4.

scriptPubkey: OP_HASH160 <scriptHash> OP_EQUAL

scriptSig: <signatures> {serializedScript}

Figure 4.4. Pay-to-ScriptHash Structure

In a Pay-to-ScriptHash transaction the sender transfers Bitcoins to the owner of a P2SH
Bitcoin address (see Sect. 4.4.2). He specifies in the challenge script the serialized script
hash (scriptHash) of the Bitcoin address (depicted in Fig. 4.9) and one requirement that
the claimant has to prove:

1) Knowledge of the redemption script serializedScript corresponding to
scriptHash.

To do so, the claimant creates a response script containing one or more signatures
and the serialized redemption script serializedScript. Note that unlike in any other
standard transaction type the responsibility of supplying the conditions for redeeming
the transaction is shifted from the sender to the redeemer. The redeemer may specify any
conditions in the redemption script serializedScript conforming to standard transaction
types. For example, he may define a standard Pay-to-Pubkey transaction as a Pay-to-
ScriptHash transaction as follows:

scriptPubkey: OP_HASH160 <scriptHash> OP_EQUAL

scriptSig: <signatures> {<pubkey> OP_CHECKSIG}

Figure 4.5. P2SH Pay-to-PublicKey Structure

Due to the nested nature of this transaction type, the script evaluation requires an
additional validation step. First, it is verified whether the redemption script (serial-
izedScript) is consistent with the redemption script hash (scriptHash) and then the
transaction is evaluated using the redemption script as scriptPubkey. The evaluation is
depicted in Table 4.5, 4.6 and 4.7.

22 Bitcoin Developer Reference

Stack Remaining Script Description

Empty
<signature>

{<pubkey> OP_CHECKSIG}

The signature and the
redemption script are
pushed on the stack.

{<pubkey> OP_CHECKSIG}

<signature>
Empty

Final state after evaluat-
ing scriptSig.

Table 4.5. Pay-to-ScriptHash scriptSig Execution

Stack Remaining Script Description

{<pubkey> OP_CHECKSIG}

<signature>

OP_HASH160 <scriptHash>

OP_EQUAL

State after copying the
stack of the signature
script evaluation. The
top stack element is first
hashed with SHA256 and
then with RIPEMD160.

<scriptHashNew>

<signature>
<scriptHash> OP_EQUAL

The redemption script
hash is pushed on the
stack.

<scriptHash>

<scriptHashNew>

<signature>
OP_EQUAL

Equality of the top
two stack elements is
checked. The result of
the evaluation is pushed
on the stack.

True

<signature>
Empty

Final state after evaluat-
ing scriptPubkey.

Table 4.6. Pay-to-ScriptHash scriptPubkey Execution

For the additional validation step the stack after scriptSig execution (see Table 4.5) is
copied, the top stack element is popped and used as the script. The state now resembles
the beginning of a standard Pay-to-Pubkey transaction evaluation (see Table 4.2).

Stack Remaining Script Description

<signature> <pubkey> OP_CHECKSIG
Initial state of supple-
mentary validation step.

.

Table 4.7. Pay-to-ScriptHash Supplementary Validation

Bitcoin ownership 23

4.3.4 Multisig

The structure of the challenge and response scripts of a Multisig transaction is depicted
below in Fig. 4.6.

scriptPubkey: m <pubkey 1> ... <pubkey n> n OP_CHECKMULTISIG

scriptSig: OP_0 <signature 1> ... <signature m>

Figure 4.6. Multisig Structure

In a Multisig transaction the sender transfers Bitcoins to the owner of m-of-n public
keys. He specifies in the challenge script n public keys (pubkey 1..n) and a requirement
that the claimant has to prove:

1) Knowledge of at least m private keys corresponding to the public keys.

To do so, the claimant creates a response script containing at least m signatures in
the same order of appearance as the public keys. Note that due to an off-by-one error
OP CHECKMULTISIG pops one too many elements off the stack and it is therefore required
to prepend the response script with a zero data push OP 0. The script is then evaluated
as depicted in Table 4.8 and 4.9. First, the signatures are pushed on the stack, followed
by the number of required signatures m, the public keys and the number of public keys n.

The bounds for a standard Multisig transaction are 1 ≤ m ≤ n ≤ 3, whereas for a
P2SH Multisig transaction they are variable. The upper bound for a P2SH Multisig
transaction is restricted by both the allowed size of the signature script scriptSig (500
bytes) and the allowed size of the serialized script serializedScript (520 bytes). It is
therefore possible to create e.g. a 1-of-12 P2SH Multisig transaction with compressed
public keys or a 4-of-5 P2SH Multisig transaction with compressed public keys. Note
that the maximum size of the signature script field (scriptSig) will be increased in the
next major release to 1650 bytes, thus allowing even bigger P2SH Multisig transactions.

24 Bitcoin Developer Reference

Stack Remaining Script Description

Empty
OP_0 <signature 1> ...

<signature m>

The signatures are
pushed on the stack.

<signature m>

...

<signature 1>

OP_0

Empty
Final state after evaluat-
ing scriptSig.

Table 4.8. Multisig scriptSig Execution

Stack Remaining Script Description

<signature m>

...

<signature 1>

OP_0

m <pubkey 1> ... <pubkey n> n

OP_CHECKMULTISIG

State after copying the
stack of the signature
script evaluation. The
public keys are pushed
on the stack.

n

<pubkey n>

...

<pubkey 1>

m

<signature m>

...

<signature 1>

OP_0

OP_CHECKMULTISIG

The signatures are veri-
fied in order of appear-
ance and the result is
pushed on the stack.

True Empty
Final state after evaluat-
ing scriptPubkey.

Table 4.9. Multisig scriptPubkey Execution

Bitcoin ownership 25

4.3.5 Nulldata

The structure of the challenge and response scripts of a Nulldata transaction is depicted
below in Fig. 4.7.

scriptPubkey: OP_RETURN [SMALLDATA]

scriptSig:

Figure 4.7. Nulldata Structure

Unlike all other standard transaction types, a Nulldata transaction does not specify in
the challenge script any recipients and does not have a corresponding response script.
Another characteristic of it is that it does not adhere to the dust transaction rule (see
Appendix B) and therefore the transaction output value can be set to zero.

The purpose of Nulldata transactions is to allow inclusion of arbitrary data in transac-
tions in a controlled fashion. For this reason these transactions possess an optional field
in which up to 40 bytes of data can be stored. Note, however, that in order to prevent
blockchain flooding only one output of this type is permitted in a transaction.

26 Bitcoin Developer Reference

4.4 Bitcoin Addresses

A Bitcoin address is a unique, 27-34 alphanumeric characters long identifier that can
be used as a destination for Bitcoin payments. There are currently two different types
of Bitcoin addresses in existence, Pay-to-PubkeyHash and Pay-to-ScriptHash, which are
used in conjunction with their corresponding transaction type. In the following both
will be described in detail.

4.4.1 Pay-to-PubkeyHash Address

Essentially, a Pay-to-PubkeyHash address is a hash of the public key portion of the
public-private ECDSA keypair with a built-in checksum. Schematics of how it is calcu-
lated can be seen in Fig. 4.8.

First, the EC public key is hashed using SHA256 and RIPEMD160. The resulting struc-
ture is referred to as pubkeyHash. Next, a constant version byte is prepended to pubkey-
Hash. A checksum is built over it by applying a double-SHA256 hash and truncating
the result to the first 4 bytes. The checksum is then appended. Finally, the result is
converted into a human-readable string using Base58 encoding [8]. The final result is a
P2PKH address.

4.4.2 Pay-to-ScriptHash Address

A Pay-to-ScriptHash address on the other hand, is a hash of the redemption script seri-
alizedScript, with a built-in checksum. Schematics of how it is calculated can be seen in
Fig. 4.9.

First, the redemption script is hashed using SHA256 and RIPEMD160. The resulting
structure is referred to as scriptHash. Next, a constant version byte is prepended to
scriptHash. A checksum is built over it by applying a double-SHA256 hash and trun-
cating the result to the first 4 bytes. The checksum is then appended. Finally, the result
is converted into a human-readable string using Base58 encoding [8]. The final result is
a P2SH address.

Bitcoin ownership 27

Figure 4.8. P2PKH Address Computation

28 Bitcoin Developer Reference

Figure 4.9. P2SH Address Computation

Bitcoin ownership 29

4.5 Signatures

Signatures are a central cryptographic primitive in Bitcoin and play a significant role
in transaction authorization (see Sect. 4.1). In a regular transaction, a signature is
included in the signature script field (scriptSig) of every transaction input to prove that
the referenced transaction output can be rightfully spent by the claimant.

Hash Types

Signatures in Bitcoin are of a specific type, referred to as hash type, that determines
which parts of the transaction are covered by it. This allows the signer to selectively
choose which transaction parts should be protected and which parts can be modified
by others. Three base signature hash types available, the default type SIGHASH ALL,
SIGHASH SINGLE and SIGHASH NONE. Additionally, a special type modifier called
SIGHASH ANYONECANPAY can be applied in conjunction with one of the three base
types.

Figure 4.10. Signature Computation - Initial State

In the following the various signature types will be discussed in detail. The depiction
in Fig. 4.10 shows the initial state of a sample transaction which will be used to illus-
trate the process. The signature will be performed for the first transaction input of the
transaction TxNew, which references the first output of a past transaction TxPrev.

30 Bitcoin Developer Reference

SIGHASH ALL

The default signature hash type SIGHASH ALL represents the simplest of the three
base types. It signs the complete transaction, including all the transactions inputs and
outputs, with the exception of the signature script fields. The coverage of the signature
is illustrated below in Fig. 4.11 with grey fields.

Figure 4.11. Signature Computation - SIGHASH ALL

Before the signature is computed, several temporary changes are made to the transac-
tion:

a) The signature script of the currently signed input is replaced with the public
key script, excluding all occurences of OP CODESEPARATOR in it, of the referenced
transaction output.

b) The signature scripts of all other inputs are replaced with empty scripts.

Bitcoin ownership 31

SIGHASH SINGLE

In the second signature hash type SIGHASH SINGLE all transaction inputs and the
transaction output corresponding to the currently signed input is signed. The coverage
of the signature is illustrated below in Fig. 4.12 with grey fields.

Figure 4.12. Signature Computation - SIGHASH SINGLE

Before the signature is computed, several temporary changes are made to the transac-
tion:

a) The signature script of the currently signed input is replaced with the public
key script, excluding all occurences of OP CODESEPARATOR in it, of the referenced
transaction output.

b) For all the remaining transaction inputs:

- The signature scripts are replaced with empty scripts.

- The sequence number is set to zero.

c) The number of transaction outputs is set to the currently signed transaction input
index plus one.

d) All transaction outputs up to the currently signed one are emptied.

32 Bitcoin Developer Reference

SIGHASH NONE

In the third signature hash type SIGHASH NONE all transaction inputs and none of
the transaction outputs are signed. The coverage of the signature is illustrated below in
Fig. 4.13 with grey fields.

Figure 4.13. Signature Computation - SIGHASH NONE

Before the signature is computed, several temporary changes are made to the transac-
tion:

a) The signature script of the currently signed input is replaced with the public
key script, excluding all occurences of OP CODESEPARATOR in it, of the referenced
transaction output.

b) For all the remaining transaction inputs:

- The signature scripts are replaced with empty scripts.

- The sequence number is set to zero.

c) The number of transaction outputs is set to zero.

d) All transaction outputs are removed.

Bitcoin ownership 33

SIGHASH ANYONECANPAY

The SIGHASH ANYONECANPAY modifier is used in conjunction with a base type
and affects the signature coverage of transaction inputs. It is used to only cover the
currently signed input by the signature. For example, the transaction depicted in Fig.
4.14 illustrates that the second transaction input is excluded from the signature.

Figure 4.14. Signature Computation - SIGHASH ALL|SIGHASH ANYONECANPAY

In addition to the changes performed by the base hash type, the following temporary
changes are made before the signature is computed:

a) The number of transaction inputs is set to one.

b) All transaction inputs, except for the currently signed one, are removed.

34 Bitcoin Developer Reference

Finalization

Once the transaction type has been chosen and the hash type dependent modifications
have been applied, the actual signature is computed. This is done as follows - first,
the hash type is appended to the transaction, then the signature itself is computed
and finally the hashtype is appended to it. The ECDSA signature is computed using
double-SHA256 and the secp256k1 elliptic curve as parameters. The appended hashtype
signals the verifying party what hash type was applied.

Figure 4.15. Signature Computation - Finalization

Blockchain 35

5 Blockchain

5.1 Structure

The blockchain is a record of all transactions that have occured in the Bitcoin system
and is shared by every node in it. Its main purpose is to infer a list of all unspent
transaction outputs and their spending conditions. The novelty of Bitcoin lies, among
other things, in how the blockchain is structured in order to guarantee chronological
ordering of transactions and prevent double-spending in a distributed network.

As described in Sect. 3.1, every block in the blockchain refers to the hash of a previous
block. This imposes a chronological order on blocks and therefore transactions as well,
since it is not possible to create a valid hash of the previous block header prior to its
existence.

Furthermore, each block includes the solution to a proof of work puzzle of a certain
difficulty. The computational power involved in solving the proof of work puzzle for
each block is used as a voting scheme to enable all nodes in the network to collectively
agree on a version of the blockchain. In particular, nodes agree on the blockchain that
involved the highest accumulated computational effort to be created. Thus, modifying
a block in the chain would require an adversary to recompute proof of work puzzles of
equal or greater computational effort than the ones from that block up to the newest
block. In order to achieve this, the adversary would have to computationally outperform
the majority of the network, which is considered infeasible.

Figure 5.1. Blockchain

Clearly, since nodes in the network compete in a randomized process to successfully
solve the proof of work puzzle and gain a reward, there is a chance that two different
blocks are mined simultaneously and the chain forks. In this case nodes will accept
whichever block they have received first and continue building the chain upon that
block. If another block is found, then the branch that was used will become the main

36 Bitcoin Developer Reference

blockchain. If this happens, all valid transactions within the shorter chain are re-added
to the pool of queued transactions. The resulting structure resembles what is depicted in
Fig. 5.1, the white block being the first block ever mined, also referred to as the genesis
block, the black chain representing the main chain and grey blocks being orphans due
to forking.

5.2 Mining

Procedure
The process of finding a valid block is called mining whereas nodes that participate in
that process are called miners. As described in [9], mining nodes perform the following
steps in an endless loop:

1) Collect all broadcasted transactions and validate whether they satisfy the miner’s
self-defined policy. Typically, a transaction includes a transaction fee that func-
tions as an incentive for the miner to include it in the block. However, if it does
not, then it is up to the miner to decide whether or not to include it.

2) Verify all transactions that are to be included in the block. Transactions are
verified as described in Sect. 4.2 and it is checked whether their inputs have been
previously spent.

3) Select the most recent block on the longest path in the blockchain, i.e. the path
that involves most accumulated computational effort, and insert the hash of the
block header into the new block.

4) Solve the proof of work problem as described below and broadcast the solution.
Should another node solve the proof of work problem before, then the block is
first validated, meaning the proof of work solution is checked and all transactions
included in the block are verified. If it passes these controls then the cycle is
repeated. Note that if there are transactions that have not been included in the
new block then they are saved and included in the next cycle.

Proof of Work
During mining a miner attempts to find a block header whose double-SHA256 hash lies
below the target value T . In order to succeed he needs a certain degree of freedom in
the block header that allows him to compute various hashes without interfering with
its semantics. Hence, two fields are used as a source of randomness - the nonce field
(nNonce) in the block header itself and the coinbase field (coinbase) in the coinbase
transaction, which indirectly changes the Merkle root (HashMerkleRoot) in the block
header. The process of finding a proof of work can then be divided into three steps:

1) Set the nonce field and the coinbase field to values of one’s choice.

2) Compute the hash of the block header as

SHA2562(nV ersion||HashPrevBlock||HashMerkleRoot||nTime||nBits||nNonce)
(9)

Blockchain 37

3) Reverse the byte order of the computed hash and check whether its value H lies
below the current target value T (stored in compact format in the nBits field):

H ≤ T (10)

This process is repeated for various nonce and coinbase values until a valid solution is
found. Typically, for efficiency reasons, all possible values of the nonce field are evaluated
before changes to the coinbase field are made.

38 Bitcoin Developer Reference

Acknowledgements

I would like to thank Dr. Boris Škorić for his invaluable help in developing this paper, the
Bitcoin Core developers Pieter Wuille (sipa on #bitcoin-dev), Luke-Jr (#bitcoin-dev)
and everyone else who has provided me with their feedback.

Data types 39

Appendix A Data types

General data types

Type
Size

(Bytes)
Description

int 4 Signed integer in little-endian.

uint 4 Unsigned integer in little-endian.

uint8 t 1 Unsigned integer.

uint16 t 2 Unsigned integer in little-endian.

uint32 t 4 Unsigned integer in little-endian.

uint64 t 8 Unsigned integer in little-endian.

uint160 20
Unsigned integer array uint32 t[] of size 5.
Used for storing RIPEMD160 hashes as a byte array.

uint256 32
Unsigned integer array uint32 t[] of size 8.
Used for storing SHA256 hashes as a byte array.

Variable length integers (VarInt)

Integers in Bitcoin can be encoded depending on the value in order to save space.
Variable length integers always precede vectors of a type of data that may vary in
length. An overview of the different variable length integers is depicted below.

Value
interval

Size

(Bytes)
Format[

0, 28 − 3
)

1 uint8 t[
28 − 3, 216

)
3 0xFD followed by the value as uint16 t[

216, 232
)

5 0xFE followed by the value as uint32 t[
232, 264

)
9 0xFF followed by the value as uint64 t

40 Bitcoin Developer Reference

Appendix B Formulas

Transaction Fees

The transaction fees TxFee in Satoshi are calculated from the transaction size TxSize
in bytes and the transaction fee rate TxFeeRate in Satoshi per kB as follows:

TxFee = TxFeeRate ·
⌈
TxSize

1000

⌉
(11)

The transaction fee rate currently lies at 10000 Satoshi per kB and can, if desired, be
changed by the user. Note, however, that if it lies below the minimum transaction fee
rate of 1000 Satoshi per kB, then it will neither be relayed nor mined.

Dust Transactions

A transaction is defined as “dust”, if any of the transaction outputs spends more than
1/3rd of its value in transaction fees. More precisely, a transaction is considered “dust”
if any of its transaction outputs satisfies the inequality

MinTxFeeRate

1000
· (TxOutSize + 148)

nV alue
>

1

3
(12)

where nValue is the transaction output value, TxOutSize is the transaction output size
in bytes and MinTxFeeRate is the minimum transaction fee rate in Satoshi per kB.

Minimum Spending Amount

It follows from the dust transaction rule that every transaction output has a minimum
spending amount defined by

MinV alue = 3 · MinTxFeeRate

1000
· (TxOutSize + 148) (13)

Given that the default minimum transaction fee rate currently lies at 1000 Satoshi per
kB and that the size of a typical transaction output is 34 bytes, the resulting minimum
spending amount is 546 Satoshi.

Bibliography 41

References

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] Unknown Author, “Bitcoin - Protocol Specification.” https://en.bitcoin.it/wiki/Protocol_

specification. Online; Accessed on 12th February 2014 at 14:20.

[3] A. Back, “Hashcash - A Denial of Service Counter-Measure,” 2002.

[4] S. Nakamoto, “Bitcoin Source Code.” https://github.com/bitcoin/bitcoin. Online; Accessed on
23rd December 2013 at 18:22.

[5] G. Andresen, “Bitcoin Improvement Proposal 0034.” https://github.com/bitcoin/bips/blob/

master/bip-0034.mediawiki. Online; Accessed on 3rd March 2014 at 17:52.

[6] Unknown Author, “Bitcoin Developer Guide.” https://bitcoin.org/en/developer-guide#

proof-of-work. Online; Accessed on 9th July 2014 at 18:05.

[7] G. Andresen, “Treat dust outputs as non-standard.” https://github.com/bitcoin/bitcoin/pull/

2577. Online; Accessed on 4th March 2014 at 20:19.

[8] Unknown Author, “Base58Check Encoding.” https://en.bitcoin.it/wiki/Base58Check_

encoding. Online; Accessed on 26th March 2014 at 22:32.

[9] C. Clark, “Bitcoin Internals - A technical guide to Bitcoin,” 2013.

